-
Abercrombie, R., & Rice, J. R. (2005). Can observations of earthquake scaling constrain slip weakening? Geophysical Journal International, 162(2), 406–424. https://doi.org/10.1111/j.1365-246X.2005.02579.x
-
Aretusini, S., Mittempergher, S., Plümper, O., Spagnuolo, E., Gualtieri, A. F., & Di Toro, G. (2017). Production of Nanoparticles during Experimental Deformation of Smectite and Implications for Seismic Slip. Earth and Planetary Science Letters, 463, 221–231. https://doi.org/10.1016/j.epsl.2017.01.048
-
Aretusini, S., Spagnuolo, E., Dalconi, M. C., Di Toro, G., & Rutter, E. H. (2019). Water Availability and Deformation Processes in Smectite-Rich Gouges During Seismic Slip. Journal of Geophysical Research: Solid Earth, 124(11), 10855–10876. https://doi.org/10.1029/2019JB018229
-
Aretusini, S., Núñez‐Cascajero, A., Spagnuolo, E., Tapetado, A., Vázquez, C., & Di Toro, G. (2021). Fast and Localized Temperature Measurements During Simulated Earthquakes in Carbonate Rocks. Geophysical Research Letters, 48(9), e2020GL091856. https://doi.org/10.1029/2020GL091856
-
Aretusini, S., Meneghini, F., Spagnuolo, E., Harbord, C. W., & Di Toro, G. (2021). Fluid pressurisation and earthquake propagation in the Hikurangi subduction zone. Nature Communications, 12(1), 2481. https://doi.org/10.1038/s41467-021-22805-w
-
Aretusini, S., Nuñez-Cascajero, A., Cornelio, C., Barrero Echevarria, X., Spagnuolo, E., Tapetado, A., et al. (2024). Mechanical Energy Dissipation During Seismic Dynamic Weakening in Calcite‐Bearing Faults. Journal of Geophysical Research: Solid Earth, 129(9), e2024JB028927. https://doi.org/10.1029/2024JB028927
-
Aubry, J., Passelègue, F. X., Deldicque, D., Girault, F., Marty, S., Lahfid, A., et al. (2018). Frictional Heating Processes and Energy Budget During Laboratory Earthquakes. Geophysical Research Letters, 45(22), 12,274-12,282. https://doi.org/10.1029/2018GL079263
-
Barbery, M. R., Chester, F. M., & Chester, J. S. (2019). Temperature and stress distribution on flash heated contacts in granite at seismic slip rates. AGUFM, 2019, MR42A-02.
-
Bizzarri, A. (2011). On the deterministic description of earthquakes. Reviews of Geophysics, 49(3), RG3002. https://doi.org/10.1029/2011RG000356
-
Blacksberg, J., Alerstam, E., Maruyama, Y., Cochrane, C. J., & Rossman, G. R. (2016). Miniaturized time-resolved Raman spectrometer for planetary science based on a fast single photon avalanche diode detector array. Applied Optics, 55(4), 739–748. https://doi.org/10.1364/AO.55.000739
-
Brantut, N., Schubnel, A., Rouzaud, J.-N. N., Brunet, F., & Shimamoto, T. (2008). High-Velocity Frictional Properties of a Clay-Bearing Fault Gouge and Implications for Earthquake Mechanics. Journal of Geophysical Research, 113(B10), 1–18. https://doi.org/10.1029/2007JB005551
-
Cocco, M., Aretusini, S., Cornelio, C., Nielsen, S. B., Spagnuolo, E., Tinti, E., & Di Toro, G. (2023). Fracture Energy and Breakdown Work During Earthquakes. Annual Review of Earth and Planetary Sciences, 51(1), 217–252. https://doi.org/10.1146/annurev-earth-071822-100304
-
Cornelio, C., Spagnuolo, E., Di Toro, G., Nielsen, S., & Violay, M. (2019). Mechanical behaviour of fluid-lubricated faults. Nature Communications, 10(1), 1–7. https://doi.org/10.1038/s41467-019-09293-9
-
Cornelio, C., Passelègue, F. X., Spagnuolo, E., Di Toro, G., & Violay, M. (2020). Effect of Fluid Viscosity on Fault Reactivation and Coseismic Weakening. Journal of Geophysical Research: Solid Earth, 125(1), e2019JB018883. https://doi.org/10.1029/2019JB018883
-
Cornelio, C., Spagnuolo, E., Aretusini, S., Nielsen, S., Passelègue, F., Violay, M., et al. (2022). Determination of Parameters Characteristic of Dynamic Weakening Mechanisms During Seismic Faulting in Cohesive Rocks. Journal of Geophysical Research: Solid Earth, 127(7), e2022JB024356. https://doi.org/10.1029/2022JB024356
-
Cowie, P. A., Attal, M., Tucker, G. E., Whittaker, A. C., Naylor, M., Ganas, A., & Roberts, G. P. (2006). Investigating the surface process response to fault interaction and linkage using a numerical modelling approach. Basin Research, 18(3), 231–266. https://doi.org/10.1111/j.1365-2117.2006.00298.x
-
Day, S. M., Dalguer, L. A., Lapusta, N., & Liu, Y. (2005). Comparison of finite difference and boundary integral solutions to three-dimensional spontaneous rupture. Journal of Geophysical Research: Solid Earth, 110(B12). https://doi.org/10.1029/2005JB003813
-
Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G., & Shimamoto, T. (2006). Natural and experimental evidence of melt lubrication of faults during earthquakes. Science, 311(5761), 647–649. https://doi.org/10.1126/science.1121012
-
Di Toro, G., Niemeijer, A. R., Tripoli, A., Nielsen, S., Di Felice, F., Scarlato, P., et al. (2010). From field geology to earthquake simulation: A new state-of-The-art tool to investigate rock friction during the seismic cycle (SHIVA). Rendiconti Lincei, 21(S1), 95–114. https://doi.org/10.1007/s12210-010-0097-x
-
Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., et al. (2011). Fault lubrication during earthquakes. Nature, 471(7339), 494–498. https://doi.org/10.1038/nature09838
-
Dieterich, J. H. (1979). Modeling of rock friction 1. Experimental results and constitutive equations. Journal of Geophysical Research: Solid Earth, 84(B5), 2161–2168. https://doi.org/10.1029/JB084iB05p02161
-
Harbord, C., Brantut, N., Spagnuolo, E., & Di Toro, G. (2021). Fault Friction During Simulated Seismic Slip Pulses. Journal of Geophysical Research: Solid Earth, 126(8), e2021JB022149. https://doi.org/10.1029/2021JB022149
-
Harris, R. A., Barall, M., Aagaard, B., Ma, S., Roten, D., Olsen, K., et al. (2018). A Suite of Exercises for Verifying Dynamic Earthquake Rupture Codes. Seismological Research Letters, 89(3), 1146–1162. https://doi.org/10.1785/0220170222
-
Heimisson, E. R., Liu, S., Lapusta, N., & Rudnicki, J. (2022). A Spectral Boundary-Integral Method for Faults and Fractures in a Poroelastic Solid: Simulations of a Rate-and-State Fault With Dilatancy, Compaction, and Fluid Injection. Journal of Geophysical Research: Solid Earth, 127(9), e2022JB024185. https://doi.org/10.1029/2022JB024185
-
Hirono, T., Tanikawa, W., Honda, G., Kameda, J., Fukuda, J., & Ishikawa, T. (2013). Importance of mechanochemical effects on fault slip behavior during earthquakes. Geophysical Research Letters, 40(12), 2988–2992. https://doi.org/10.1002/grl.50609
-
Ida, Y. (1972). Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. Journal of Geophysical Research, 77(20), 3796–3805. https://doi.org/10.1029/jb077i020p03796
-
Jia, Z., Jin, Z., Marchandon, M., Ulrich, T., Gabriel, A.-A., Fan, W., et al. (2023). The complex dynamics of the 2023 Kahramanmaraş, Turkey, Mw 7.8-7.7 earthquake doublet. Science, 381(6661), 985–990. https://doi.org/10.1126/science.adi0685
-
Kanamori, H., & Brodsky, E. E. (2004). The physics of earthquakes. Reports on Progress in Physics, 67(8), 1429–1496. https://doi.org/10.1088/0034-4885/67/8/R03
-
Kanamori, H., & Heaton, T. H. (2000). Microscopic and Macroscopic Physics of Earthquakes. In Geocomplexity and the Physics of Earthquakes (pp. 147–163). American Geophysical Union (AGU). https://doi.org/10.1029/GM120p0147
-
Kostrov, B. V., & Das, S. (1988). Principles of earthquake source mechanics. Cambridge University Press.
-
Kulla, H., Haferkamp, S., Akhmetova, I., Röllig, M., Maierhofer, C., Rademann, K., & Emmerling, F. (2018). In Situ Investigations of Mechanochemical One-Pot Syntheses. Angewandte Chemie International Edition, 57(20), 5930–5933. https://doi.org/10.1002/anie.201800147
-
Kuo, L.-W., Suppe, J., Song, S.-R., Li, H., Si, J., Smith, S. A. F., et al. (2014). Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake. Geology, 42(1), 47–50. https://doi.org/10.1130/G34862.1
-
Kuo, L.-W., Di Felice, F., Spagnuolo, E., Di Toro, G., Song, S.-R., Aretusini, S., et al. (2017). Fault Gouge Graphitization as Evidence of Past Seismic Slip. Geology, 45(11), 979–982. https://doi.org/10.1130/G39295.1
-
Lambert, V., & Lapusta, N. (2020). Rupture-dependent breakdown energy in fault models with thermo-hydro-mechanical processes. Solid Earth, 11(6), 2283–2302. https://doi.org/10.5194/se-11-2283-2020
-
Lambert, V., Lapusta, N., & Perry, S. (2021). Propagation of large earthquakes as self-healing pulses or mild cracks. Nature, 591(7849), 252–258. https://doi.org/10.1038/s41586-021-03248-1
-
Lambert, V., Lapusta, N., & Faulkner, D. (2021). Scale Dependence of Earthquake Rupture Prestress in Models With Enhanced Weakening: Implications for Event Statistics and Inferences of Fault Stress. Journal of Geophysical Research: Solid Earth, 126(10), e2021JB021886. https://doi.org/10.1029/2021JB021886
-
Lukin, S., Užarević, K., & Halasz, I. (2021). Raman spectroscopy for real-time and in situ monitoring of mechanochemical milling reactions. Nature Protocols, 16(7), 3492–3521. https://doi.org/10.1038/s41596-021-00545-x
-
Lukin, S., Germann, L. S., Friščić, T., & Halasz, I. (2022). Toward Mechanistic Understanding of Mechanochemical Reactions Using Real-Time In Situ Monitoring. Accounts of Chemical Research, 55(9), 1262–1277. https://doi.org/10.1021/acs.accounts.2c00062
-
Magnarini, G., Aretusini, S., Mitchell, T. M., Pennacchioni, G., Di Toro, G., & Schmitt, H. H. (2023). Friction Experiments on Lunar Analog Gouges and Implications for the Mechanism of the Apollo 17 Long Runout Landslide. Journal of Geophysical Research: Planets, 128(6), e2022JE007520. https://doi.org/10.1029/2022JE007520
-
Marty, S., Passelègue, F. X., Aubry, J., Bhat, H. S., Schubnel, A., & Madariaga, R. (2019). Origin of High-Frequency Radiation During Laboratory Earthquakes. Geophysical Research Letters, 46(7), 3755–3763. https://doi.org/10.1029/2018GL080519
-
Michalchuk, A. A. L., & Emmerling, F. (2022). Time-Resolved In Situ Monitoring of Mechanochemical Reactions. Angewandte Chemie International Edition, 61(21), e202117270. https://doi.org/10.1002/anie.202117270
-
Muratore, C., Bultman, J. E., Aouadi, S. M., & Voevodin, A. A. (2011). In situ Raman spectroscopy for examination of high temperature tribological processes. Wear, 270(3), 140–145. https://doi.org/10.1016/j.wear.2010.07.012
-
Nielsen, S., Di Toro, G., Hirose, T., & Shimamoto, T. (2008). Frictional melt and seismic slip. Journal of Geophysical Research, 113(B1), B01308. https://doi.org/10.1029/2007JB005122
-
Nielsen, S., Spagnuolo, E., Violay, M., & Di Toro, G. (2021). Thermal Weakening Friction During Seismic Slip: Experiments and Models With Heat Sources and Sinks. Journal of Geophysical Research: Solid Earth, 126(5). https://doi.org/10.1029/2020JB020652
-
Niemeijer, A. R., Di Toro, G., Nielsen, S., & Di Felice, F. (2011). Frictional melting of gabbro under extreme experimental conditions of normal stress, acceleration, and sliding velocity. Journal of Geophysical Research: Solid Earth, 116(B7), 1–18. https://doi.org/10.1029/2010JB008181
-
Noda, H., & Lapusta, N. (2010). Three-dimensional earthquake sequence simulations with evolving temperature and pore pressure due to shear heating: Effect of heterogeneous hydraulic diffusivity. Journal of Geophysical Research: Solid Earth, 115(B12). https://doi.org/10.1029/2010JB007780
-
Noda, H., Dunham, E. M., & Rice, J. R. (2009). Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels. Journal of Geophysical Research: Solid Earth, 114(B7). https://doi.org/10.1029/2008JB006143
-
Noda, H., Kanagawa, K., Hirose, T., & Inoue, A. (2011). Frictional experiments of dolerite at intermediate slip rates with controlled temperature: Rate weakening or temperature weakening? Journal of Geophysical Research: Solid Earth, 116(B7). https://doi.org/10.1029/2010JB007945
-
Passelègue, F. X., Schubnel, A., Nielsen, S., Bhat, H. S., & Madariaga, R. (2013). From sub-Rayleigh to supershear ruptures during stick-slip experiments on crustal rocks. Science, 340(6137), 1208–1211. https://doi.org/10.1126/science.1235637
-
Passelègue, F. X., Schubnel, A., Nielsen, S., Bhat, H. S., Deldicque, D., & Madariaga, R. (2016). Dynamic rupture processes inferred from laboratory microearthquakes. Journal of Geophysical Research: Solid Earth, 121(6), 4343–4365. https://doi.org/10.1002/2015JB012694
-
Passelègue, F. X., Spagnuolo, E., Violay, M., Nielsen, S., Di Toro, G., & Schubnel, A. (2016). Frictional evolution, acoustic emissions activity, and off-fault damage in simulated faults sheared at seismic slip rates. Journal of Geophysical Research: Solid Earth, 121(10), 7490–7513. https://doi.org/10.1002/2016JB012988
-
Platt, J. D., Rudnicki, J. W., & Rice, J. R. (2014). Stability and localization of rapid shear in fluid-saturated fault gouge: 2. Localized zone width and strength evolution. Journal of Geophysical Research: Solid Earth, 119(5), 4334–4359. https://doi.org/10.1002/2013JB010711
-
Rice, J. R. (2006). Heating and weakening of faults during earthquake slip. Journal of Geophysical Research: Solid Earth, 111(5), 1–29. https://doi.org/10.1029/2005JB004006
-
Rowe, C. D., Lamothe, K., Rempe, M., Andrews, M., Mitchell, T. M., Di Toro, G., et al. (2019). Earthquake lubrication and healing explained by amorphous nanosilica. Nature Communications, 10(1), 1–11. https://doi.org/10.1038/s41467-018-08238-y
-
Ruina, A. (1983). Slip Instability and State Variable Friction Laws. Journal of Geophysical Research, 88(B12), 10359–10370. https://doi.org/10.1029/JB088iB12p10359
-
Ryan, K. J., Geist, E. L., Barall, M., & Oglesby, D. D. (2015). Dynamic models of an earthquake and tsunami offshore Ventura, California. Geophysical Research Letters, 42(16), 6599–6606. https://doi.org/10.1002/2015GL064507
-
Scholz, C. H. (2019). The Mechanics of Earthquakes and Faulting. The Mechanics of Earthquakes and Faulting. Cambridge University Press. https://doi.org/10.1017/9781316681473
-
Selvadurai, P. A. (2019). Laboratory Insight Into Seismic Estimates of Energy Partitioning During Dynamic Rupture: An Observable Scaling Breakdown. Journal of Geophysical Research: Solid Earth, 124(11), 11350–11379. https://doi.org/10.1029/2018JB017194
-
Sibson, R. H. (1975). Generation of Pseudotachylyte by Ancient Seismic Faulting. Geophysical Journal of the Royal Astronomical Society, 43(3), 775–794. https://doi.org/10.1111/j.1365-246X.1975.tb06195.x
-
Sibson, R. H. (2003). Thickness of the seismic slip zone. Bulletin of the Seismological Society of America, 93(3), 1169–1178. https://doi.org/10.1785/0120020061
-
Sorensen, D. C. (1982). Newton’s Method with a Model Trust Region Modification. SIAM Journal on Numerical Analysis, 19(2), 409–426. https://doi.org/10.1137/0719026
-
Spagnuolo, E., Plümper, O., Violay, M., Cavallo, A., & Di Toro, G. (2015). Fast-moving dislocations trigger flash weakening in carbonate-bearing faults during earthquakes. Scientific Reports, 5, 1–11. https://doi.org/10.1038/srep16112
-
Spray, J. G. (2005). Evidence for melt lubrication during large earthquakes. Geophysical Research Letters, 32(7), n/a-n/a. https://doi.org/10.1029/2004GL022293
-
Sulem, J., & Famin, V. (2009). Thermal decomposition of carbonates in fault zones: Slip-weakening and temperature-limiting effects. Journal of Geophysical Research, 114(B3). https://doi.org/10.1029/2008jb006004
-
Taylor, G. I., & Quinney, H. (1934). The latent energy remaining in a metal after cold working. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 143(849), 307–326. https://doi.org/10.1098/rspa.1934.0004
-
Tinti, E., Fukuyama, E., Piatanesi, A., & Cocco, M. (2005). A Kinematic Source-Time Function Compatible with Earthquake Dynamics. Bulletin of the Seismological Society of America, 95(4), 1211–1223. https://doi.org/10.1785/0120040177
-
Tinti, E., Cocco, M., Fukuyama, E., & Piatanesi, A. (2009). Dependence of slip weakening distance (Dc) on final slip during dynamic rupture of earthquakes. Geophysical Journal International, 177(3), 1205–1220. https://doi.org/10.1111/j.1365-246X.2009.04143.x
-
Violay, M., Nielsen, S., Spagnuolo, E., Cinti, D., Di Toro, G., & Di Stefano, G. (2013). Pore fluid in experimental calcite-bearing faults: Abrupt weakening and geochemical signature of co-seismic processes. Earth and Planetary Science Letters, 361, 74–84. https://doi.org/10.1016/j.epsl.2012.11.021